

Presentation Outline

- Introduction to Municipal Solid Waste (MSW)
- Proven Waste Conversion Processes
- Emerging Waste Conversion Processes
- Examples of WTE in Florida, U.S. and the World
- Suggestions for Teachers of Future Innovators

Let's Talk Trash!

Average American Municipal Solid Waste Data

Average Generation 4.48 pounds / person / day (0.82 tons per year)

- Responsible or 36,000 pounds of CO₂ emissions per year, or ~2,830,000 pounds over a lifetime of 78.6 years
 - Equivalent to burning 1,418,000 pounds (709 tons) of coal
 - Equivalent to driving 3,171,000 miles in a passenger vehicle

35% current national recycling rate (~40% in Florida, 2018 data)

52% of municipal solid waste (MSW) is disposed of in landfills
>3,000 active landfills

~ 70 active Waste-to-Energy facilities processing ~8% of MSW

3

Intended Consequences of the Integrated Solid Waste Management Hierarchy

Introduction to Municipal Solid Waste

Solid Waste Management Hierarchy

The Three Rs of Recycling...Plus Two More

What's In Our Municipal Solid Waste?

Figure 4. Total MSW Generation (by material), 2015 262 Million Tons

Most materials can be recycled somewhere, in some way, but <u>NOT</u> always in your curbside cart

Future Trends:

- Reduction in Old Newsprint (ONP) and glass
- Growth in plastics and corrugated fibers
- Growth in composite materials for packaging and products
- Reduction in single use plastics?

Introduction to Municipal Solid Waste

Key Impacts of Waste Management Options

Cost

- Pollutants (NO_x, SO_x, VOCs, PM₁₀, CO, HCl, Hg, Pb, Cd)
 - Collection
 - Processing
 - Disposal
 - Greenhouse gases (CO₂, CH₄, N₂O) Socio-demographics
 - Jobs, tax base, environmental justice
- Energy consumption and/or savings
- Traffic, vehicle collisions, and wear and tear on roadways

Benefits of Recycling

- Reduces waste sent to landfills and uncontrolled emissions
- Conserves natural resources
- Prevents pollution by reducing the need to mine new raw materials
- Saves energy which reduces greenhouse gas emissions (CO₂, CH₄, N₂O)
- Increases economic security
 - High quality jobs and careers in U.S. recycling and manufacturing industries
 - 10 times more jobs in recycling than disposal

Energy Savings Due to Recycling

- Aluminum 94%
- Plastic 90%
- Steel 75%
- Lead 75%
- Paper 40%
- Glass 25%

Fun Facts – Annual Waste Collection

Hillsborough County (includes City of Tampa)

- Collects ~ 3.3 mtpy
- WTE processes ~ 920,000 tpy (~28%)
- Pasco County
 - Collects ~ 1.2 mtpy
 - WTE processes ~ 350,000 tpy (~30%)
 - Pinellas County
 - Collects ~ 2.3mtpy
 - WTE processes ~1,000,000 tpy (~43%)

NYC generates ~ 33 mtpy of MSW with only 700,000 tpy of recyclables and no WTE facilities

rocessing that was altractive to local and regional markets.

Schedule to Meet Florida's 75% Recycling Goal (based upon 2010 H. B. 7243)

Recycling Technology Trends

- New Material Recovery Facilities (MRFs) will be more mechanized
- Robotics and Artificial Intelligence (AI)
 - Robotic sorting machines are learning to identify different types of materials, remove them from conveyor belts of mixed materials at rapid speed and deposit them into appropriate categories for further sorting
- U.S needs to develop home-grown recycling infrastructure
 Mixed papers and No. 3-7 plastics
 Food waste

Key Advantages of Modern Waste-to-Energy (WTE) Technology

- Aesthetically pleasing
- 90% volume reduction
- Stabilized ash residue
- Recovery of energyRecovery of metals

- Waste treatment reduces or eliminates future landfill liabilities (note that U.S. does not require waste to be stabilized prior to disposal as in Europe)
- Control over future disposal capacity and pricing

Typical Mass Burn WTE Flow Diagram

Typical Massburn WTE Facility Cross-Section

Based upon Volund technology employed at the newest WTE facility in the U.S. (Palm Beach County, Florida)

Modern WTE Trends... Advancing Efficiency, Aesthetics, and Sustainability!

Historical Emission Trends Since 2000 CAAA from Large and Small Municipal Waste Combustors

Pollutant	1990 Emissions (TPY)	2005 Emissions (TPY)	Percent Reduction
CDD/CDF TEQ Basis *	44	15	99+%
Mercury	57	2.3	96%
Cadmium	9.6	0.4	96%
Lead	170	5.5	97%
Particulate Matter	18,600	780	96%
HCL	57,400	3,200	94%
SO ₂	38,300	4,600	88%
NOx	64,900	49,500	24%

Source: EPA, August 2007

* Dioxin/furan emissions are in units of grams per year toxic equivalent quantity (TEQ), using

1989 NATO toxicity factors; all other pollutant emissions are in units of tons per year

CDM Smitł WTE Capacity Factor is Among Highest Renewable / Fossil Energy Options (24/7/365)

Hydroelectric 10-99% Waste-to-Energy (WTE) 85-95% WTE can **Baseload Coal** 80-90% • help provide Landfill Gas 80-95% fuel diversity 60-85% **Biomass** \mathbf{O} for base Natural Gas Combined Cycle 60-80% load power Thermal solar (parabolic trough) 40% production to local grid! 20-40% Wind 0 Photovoltaic solar (southern latitudes) 18-20% Photovoltaic solar (northern latitudes) 12-15% Capacity Factor = actual kWhrs produced divided by kWhrs that would have been produced if operated at design capacity

Modern Waste-to-Energy Reduces Greenhouse Gas (GHG) Emissions

- 1 Ton MSW Combusted Avoids 1 Ton of CO_{2e} Emissions
 - = Carbon Dioxide emissions from fossil portion of MSW
 - Avoided Landfill Methane Emissions

- Avoided CO₂ from Displaced Fossil Fuel Electricity
- Avoided CO₂ from Metals Production using Recovered Ferrous and Nonferrous Metals

Dominant WTE Technology in U.S. is Massburn Combustion (aka Advanced Thermal Recycling)

Modern WTE Facility Operators Focus on Good Housekeeping!

WTE Minimizes Waste Disposed in Landfills

~ 90% volume and 75% weight reduction plus 2.8 % metal recovery

First WTE Metal Recovery Operation Ferrous Metals > 6-inch Size

Second WTE Metal Recovery Liberated Ferrous and Non-ferrous Metals

Ferrous metals <6" in size (everything...including the kitchen sink)

Non-ferrous metals (+3/8 -2") (aluminum, brass, bronze, copper, gold, silver, stainless)

Sample of Non-ferrous Metals Liberated and Recovered After Combustion

Aluminum, brass, bronze, copper, and stainless

Most of these items are NOT ACCEPTED in curbside programs Dense aluminum nuggets

Coins Separated from Non-ferrous Metals Palm Beach County, Florida

Recovered Recyclable Products from WTE Bottom Ash (European Experience)

Fine minerals (< 0.07 inch)

Mineral aggregates (> 0.07 inch)

Non-ferrous concentrate

Ferrous concentrate

Recovered Aluminum Products Light Non-ferrous Metals from WTE Bottom Ash

Aluminium scrap product (fine)

o.o4 – o.14 inch
70 - 75% pure metal scrap

Aluminium scrap product (middle)

0.14 – 0.4 inch
75 - 80 % pure metal scrap

Aluminium scrap product (coarse)

- 0.4 0.75 inch
- 85 90 % pure metal scrap

Heavy Non-ferrous Metals from WTE Bottom Ash

Heavy non ferrous scrap

- 0.04 0.75 inch
- 95-99 % pure metal scrap

WTE Bottom Ash Recycling Raw Material for Production of Portland Cement

Component	Portland Cement	Clinker	Typical WTE Ash
Silica (SiO ₂)	18-24	22-24	24
Aluminia (Al ₂ O ₃)	4-8	5	6
Ferric Oxide (Fe ₂ O ₃)	2-5	0-3	3
Lime (CaO)	62-67	68-71	37

Source: Defending the Character of Ash, Richard W. Goodwin, 1992

Future Recovery of Rare-Earth Metals from WTE Ash Residue

 Driven by China's control over rare earth metals supply

- European innovations in WTE ash management
 - Advanced metal recovery technology optimizes recovery of ferrous, nonferrous and precious metals
 Rare Earth Metal recovery under development

WTE Can Help Communities Meet Future Goals for "Zero Waste" to Landfill!

Ultimate Waste Conversion Technology Wishful Thinking – But It's Not That Easy!

The Ultimate Waste Conversion Black Box

- Low Capital Cost
- Low Annual Maintenance Cost
- Easily Operated
- Over 90% Reduction Efficiency
- Leftover Material Used in Your Garden!!

Range of Revenues from Conversion of MSW

Product	Yield from 1 ton MSW	Value of Product	Revenue per Processed Ton
Electricity	500-650 kWh	\$0.05 / kWh	\$25-\$33 + RECs
Synthetic Crude	1 barrel	\$40 / barrel	\$40
Bio-Diesel	35 gallons	\$2.00 / gallon	\$70 + RINs
Recyclables	0.8 – 1.0 ton	\$75 - \$150 / ton	\$60 - \$150
Ethanol	50 – 100 gallons	\$2.00 / gallon	\$100 - \$200 + RINs

Future Chemical Recycling By-products...It's Not Just About Ethanol!

- Butanol
- Ethanol
- Heating Fuel
- Higher Alcohols
- Aviation and Jet Fuel
- Low Sulfur Diesel
- Methanol DME
- Synthetic Gasoline
 - Synthetic Natural Gas (CNG / LNG)

Options for Organic Waste

Current practice:

- Most landfilled (21,000,000 tons per year)
- Some composted
- Very little digested
- 2,000 Anaerobic Digesters in U.S.
 - Most located on farms (animal waste)
 - A few standalone digesters for food waste
 - Two primary by-products
 - Biogas for energy (pipeline gas, electricity/heat for on farm application)
 - Soil amendment of residuals

Co-Digestion is being developed in several U.S. Cities

– NYC, LA, SF, SLC, Philadelphia

Co-digestion of Organic Waste with Wastewater Biosolids

What does a Co-Digestion Facility Look Like? Courtesy of Harvest Power Orlando

- 120,000 tpy capacity processing food waste and WWTP biosolids into biomethane
- 3.2 MWe plus heat for drying granular biosolids product (5,000 mt/year)
- Facility commissioned in December 2013

Digester

Tank FOG Receiving Station and Tank

Blending

Digestate and Biogas Storage

Emerging Waste Conversion Technologies

Co-Digestion 101...It's Not Rocket Science, but Requires Knowledge of Biology and Chemistry

Organic Compounds

 Digestion is a biological process that uses organic compounds as an energy source. Inorganics are not readily metabolized.

Carbon : Nitrogen Ratio

Ideal C:N ratio between 20 and 30 for stable digestion

Higher nitrogen concentrations can cause ammonia toxicity

Trace Nutrients

Micronutrients are essential (phosphorus, magnesium, iron, molybdenum, nickel, and cobalt)

Absence of Inhibitory Compounds

Disinfectants, antibiotics, and heavy metals can negatively influence digester populations

Des Moines Iowa Co-Digestion Project...40% of Feedstock from Region for Additional Revenue

Emerging Waste Conversion Technologies

Ineos Bio-Energy Center (2012) Indian River County Florida

Phase 1 - 8 mmgpy from vegetative waste Phase 2 – 50 mmgpy from RDF 400 direct jobs in construction, engineering and manufacturing

Injected more than \$25 million dollars directly into the Florida economy

60 full-time employees

\$4 million annually in payroll to the local community

Potential Sites for Co-firing of Engineered Fuel at Cement Kilns

Emerging Waste Conversion Technologies

Florida Waste-to-Energy Facilities 12 Facilities with 607 MW of Renewable Electricity

Integrated Solid Waste Management – Florida Examples

44

City of Tampa WTE Facility Located on Public Works Campus

Recycled Aggregate Storage Yard

rans

Integrated Solid Waste Management – Florida Examples

Fire and Police Faining Facilities

City of Tampa WTE Facility 1,000 TPD Massburn – 22.5 MW

- Original construction: 1975
- Rebuilt as WTE: 1985
- Retrofit for CAAA: 1998-2001

Portions of this facility are 40+ years old and on their third life!

City of Tampa - Public Works Recycled Asphalt Pavement

Recycled Asphalt Pavement (RAP) millings (<1/2 inch) stockpiled for future Public Works projects

City of Tampa Public Works Recycling Used Ceramics

Toilet bowls and household ceramics stockpiled at City of Tampa Public Works yard for later crushing and sizing to <1/2 inch

Pinellas County WTE Facility Located on Integrated Solid Waste Management Campus

Integrated Solid Waste Management – Florida Examples

49

Pinellas County WTE Facility 3,000 TPD Massburn – 75 MW Net Electrical Output

Original construction: 1985
1,000-TPD expansion: 1987

Integrated Solid Waste Management – Florida Examples

LITT

Hillsborough County WTE Facility Located on Public Works Campus

Smui

Hillsborough County WTE Facility 1,800 TPD Massburn – 46 MW Net Electrical Output

Compatible with the urban landscape Commercial/industrial development has occurred around facility over the past 27 years!

Integrated Solid Waste Management – Florida Examples

52

Hillsborough County Florida WTE and WWTP Synergy

1,800 TPD WTE Facility

12 MGD AWTP Facility

MW

in Future to Public Works Campus

~ 5 MW

37 MW Currently Sold to Grid

Hillsborough County Integrated Solid Waste Management System

Hillsborough County ISWM Taking Advantage of Former Landfill Sites

Vegetative and Wood Waste Processing

Citizen Drop-off Center

Integrated Solid Waste Management – Florida Examples

-

Fransfer Station

Hillsborough County ISWM Waste Tire Collection and Processing Center

Used Tires Stockpiled and Chipped on an Active Landfill Site

Pasco County WTE Facility Located on **Integrated Utility Campus**

- Raw Waste Landfill
- C&D Landfill
- Ash Monofill 1,050 TPD WTE Facility **Citizen Drop-off Facility** Recyclables \rightarrow Yard waste and tires Household Hazardous Waste Adjacent WWTP (8-mgd)

Pasco County Integrated Solid Waste Management and Utility Campus

Pasco County Florida WTE 1,050 TPD Massburn – 30 MW Net Electrical Output

- Construction: 1989-1991
- \$90M capital cost

Machine for "Halving" Tires on Rims Supplemental Fuel for Pasco County WTE

Chipped Tires Supplemental Fuel for Pasco County WTE Facility

Lee County WTE Facility Located on Integrated Solid Waste Campus

Lee County WTE Facility 1,800 TPD – 58-MW Electrical

Original construction: 1994
636-TPD expansion completed: 2006

Palm Beach County WTE Facilities (2) Located on Integrated Solid Waste Management Campus

- Raw waste and ash landfill
- Construction and demolition debris landfill
- 2,000 tpd RDF WTE facility
- 3,000 tpd Massburn WTE facility (2015)
 - **Recycling facilities**
- Household hazardous waste drop-off facility
- Compost facility

 \mathbf{O}

Biosolids drying / pelletizing facility

Palm Beach County Rendering of New 3,000 TPD Massburn WTE

Sustainability and enhanced aesthetics have been integrated into the design of this facility, the first new WTE facility in the US since 1996

Palm Beach County Incorporating Rainwater Harvest (First 2" of Rain)

Integrated Solid Waste Management – Florida Examples

2 MG

Palm Beach County Visitors Center with Elevated Tour Walkway

Tours conducted for elementary, middle and high school students

Integrated Solid Waste Management – Florida Examples

67

Visitor Ce

Palm Beach County Regional Biosolids Processing Facility on ISWM Campus

URBANE DESIGN STUDIO

Integrated Solid Waste Management – Florida Examples

68

Supplemental Waste Program Lancaster County Pennsylvania

Carl and a state of the

Addition to Tipping Building for Supplemental Waste Program

AT Think the

Opportunities to Generate Revenues at Modern WTE via Special Waste Program

Co-combustion of Special Wastes:

- WWTP biosolids
- Used tires
- Carpet
- Construction and Demolition (C&D) combustibles
- Bulky waste
- Off-spec / out of date / confidential materials (assured destruction)
- USDA regulated garbage (international waste)
- Auto shredder residue
 - Expired pharmaceuticals
 - Special industrial waste
- Marine and fishing waste
- Liquid waste

Integrated Solid Waste Management – U.S. Examples

Windmills on Landfill Lancaster County Pennsylvania

Additional Revenue to the Solid Waste System via Sale of Renewable Electricity

Lancaster County Pennsylvania Public Outreach and Education is a Full-time Job

Integrated Solid Waste Management – U.S. Examples

72

Hennepin County Minnesota WTE WTE is Compatible with Urban Development!

Low pressure steam is used for a heating of grassed areas for

Target Field (2010)

early greening in spring, along with space heating and hot water needs of ballpark

Integrated Solid Waste Management – U.S. Example

HERC WTE Facility

(1987)

Isséane Waste to Energy Facility in Paris France (partially underground to blend in with local development)

Integrated Solid Waste Management – France Example

World's Largest EfW Facility (2020) in China to include Desalination Water Plant and Solar PV

5,000 mtpd (5,600 tpd)

- 125 MW nameplate electrical
- 132 mgd water production
- Shenzhen, China (population of 20 Million)

Schmidt Hammer Lassen Architects and Gottlieb Paludan Architects

Integrated Solid Waste Management – China Example

The Future for Integrated Sustainable Waste Management

We'll see it... when we believe it!

Teaching future generations to make Transition from Waste Management to "Resource Management"

Conclusion

Campus for Management of Municipal Resources... Solid Waste, Recycling, and Water Resources

Conclusion

77

Teaching the Next Generation...We are all Waste Generators and it's only Waste...if we Waste it.!

- Waste Management must morph into Resource Management
- Reduce use of fossil fuels (coal, oil, natural gas) by accounting for all environmental costs and replace with clean energy (solar, wind, bioenergy, and biochemicals)
 - Cheap and plentiful fossil fuels are essential for our current way of life, rapid changes could have negative consequences. Need to develop equitable way to alleviate pain of higher cost of energy!
 - Circular economy must replace outdated linear economy model of "take, make, waste". A circular economy is one that is restorative by design, and which aims to keep products, components and materials at their highest utility and value at all times, distinguishing between technical and biological cycles. – Ellen MacArthur Foundation

Replace Apathy with Action

- NIMBY...Not in My Back Yard
- NIMEY...Not in My Election Year
- BANANA...Build Absolutely Nothing Anywhere Near Anyone
- NUMBEE...Not Using My Bucks Ever, Either
- NIMBI...Now I Must Become Involved!
- NYMBI...Now You Must Become Involved!

Conclusion

Thank You for the Opportunity to Share ...and Imagineer!

Paul Hauck, PE CDM Smith

Address: 1715 N. Westshore Boulevard, Suite 875 Tampa, Florida 33607

E-mail: hauckpl@cdmsmith.com

Conclusion